Miles Mathis unit calculus

Discussion concerning other (non-RS) systems of theory and the insights obtained from them, as applied to the developing RS2 theory.
Gopi
Posts: 136
Joined: Wed Jan 05, 2005 1:58 am

Re: Miles Mathis unit calculus

Post by Gopi » Mon Oct 16, 2017 7:55 am

One thing I did find out that is interesting about this issue is that at the limit as the angle m approaches 0, the difference between the length of the tangent and the length of the arc approaches 8 times the difference between the length of the arc and the length of the chord.
That is important... I think it can be derived by using the "series expansions" for each one, taking angle as "x" in radians for a unit circle:

Limit = (tan(x)-x)/(x-2sin(x/2)) = 8 + 3.3x2 + ...

Yeah, Miles' analysis is flawed there, I did try to explain that to him. Which is why I had to get into a re-derivation of circular motion.

Post Reply