BIRROTATION
$e^{i \omega}+e^{-i \omega}=2 \cos \omega$
Question:
The cosine should be of an angle $\boldsymbol{\square}, \boldsymbol{\square}$, not of an angular velocity In that case we should divide by t to obtain a velocity

```
\(\frac{e^{i \varphi}}{t}+\frac{e^{-i \varphi}}{t}=\frac{2 \cos \varphi}{t}\)
\((s / t)^{2}=(s / t)+(s / t)\)
\(v^{2}(\mathrm{TR})=1+v(\mathrm{SR})\)
\(v=\Phi\)
\(\Phi=\left(\frac{1+\sqrt{5}}{2}\right)=1.618\)
\(v^{2}=1+v\), Solution is: \(\frac{1}{2} \sqrt{5}+\frac{1}{2}, \frac{1}{2}-\frac{1}{2} \sqrt{5}=1.618,-0.61803=\Phi, 1-\Phi\)
```

