I know Larson didn't think so, but it's true. The entire foundation of the Newtonian program of research is based on his laws of motion and the algebra that developed along with them, culminating in Maxwell's equations, as reformulated by Gibbs and Heaviside. Thus, the equations of velocity, mass and energy enabled the construction of more and more useful and efficacious physical models, based on what came to be known as vector algebra.

For example, the simple equation of velocity, v = Δs/Δt, enabled the modeling of vector motion, the one-dimensional motion of an object in a given direction specified in a three-dimensional coordinate system. Given the mass of the object in motion, and the velocity, v, the momentum of the object, p, could be determined, and even the kinetic energy, E = 1/2 mv

^{2}.

Of course, this was just the "begeen of the begeen." Much, much more would follow from these simple equations, until only the most trained specialist could understand them, but when it came to modeling the Hydrogen atom, it was the simple equations of velocity, acceleration, energy, mass and momentum that enabled the Bohr model.

Today, it's being recognized more and more that it's the model of the Hydrogen atom, as it has evolved, which is the root cause of the trouble with physics. The most iconoclastic assault on it is being led by Randell Mills, but, while Mills is dismantling the scaffolding of Quantum Mechanics, his new model is built on the same foundation of velocity, acceleration, momentum, mass, energy, etc.

In other words, even though Larson and Xavier Borg have independently shown that all physical units are ultimately units of space and time, the physicists of the legacy system of theory (LST) continue to ignore that astounding and game-changing fact, and its far-reaching implications.

That leaves us peons to carry on as best we can. New bottles for new wine, as they say. In this discussion of the LRC Research, based on Larson's Reciprocal System of Physical Theory (RST), I'm trying to explain how we might construct a new RST-based model of the atomic elements.

Larson made the case against the nuclear atom (here), in which he flatly rejected the planetary analogy of the Bohr model. His model, based on scalar motion, has no nucleus of small positive charge, surrounded by electrons in orbit, or in clouds, or in shells. In his model, the electron combines with the proton, both of which are combinations of scalar motion, to form a greater combination of motion,

The atomic elements were simply greater and greater combinations of scalar motion. At the LRC, we've modified Larson's assumptions of how these combinations form, and from that has emerged the building blocks of matter and radiation. We are happy that it has worked thus far, but it's only a start. The biggest challenge we face now is how to forge ahead in terms of scalar motion equations. We need equations to build sophisticated models that are as predictive as the models of Mills, which we can't use, because of fundamental confusion of physical dimensions and terms.

Terms such as Bohr radius, Planck's constant, mass, charge and energy, have been adopted by students of the RST for years, as the language of the new system, but these are all based on LST concepts of vector motion, not scalar motion. They cannot be used in equations of scalar motion to model a combination of scalar motions!

The basic combinations of the LRC's RST-based theory (RSt), work out well for one-dimensional units of "charge," because the relations between the combinations is additive, but to go beyond the one-dimensional properties of the combos, we face a great language barrier.

The LST uses units of mass, which have the 3D dimensions of the cosmic sector (cs), not because material sector (ms) motion combinations are 3D combinations of cs motion, but because mass is a concept of measuring the resistance of the combos to vector motion (inertia). The LST uses units of energy, which have the 1D dimensions of cs motion, not because energy is cs motion, but because it expresses the amount of work required to move mass in a given direction of the reference system.

Then we have units of momentum, which have the 2D dimensions of the cs, not because it is 2D cs motion, but because it is a measure of mass in vector motion, mass that is measured in terms of its resistance to motion combos in the ms!

To make matters worse, the RSt combos of motion are not just made up of combinations of ms or cs scalar motions, but an equal, or unequal, balance of both, like a bank balance sheet, in three dimensions!

The challenge is terrific, but starting with the next post, I'll share a possible approach to formulating a whole new language, suitable for our research, for what it's worth.