The Total Time Derivative with Bi-Quaternion Electrodynamics

André Waser*

In a recent paper [3] we have shown that the basic equations of electrodynamics can be cast into a bi-quaternion form. In this paper I present an other general way how the set of four equations of the generalised Lorentz force can be derived by introducing a new operator: The bi-quaternion total time derivative operator.

Introduction

Bi-quaternions are very useful for a compact description of electrodynamics. A biquarternion is defined as

$$
\begin{equation*}
\mathrm{X}=\mathrm{x}_{0}+\mathrm{iy}_{0}+\overrightarrow{\mathbf{i}} \cdot(\overrightarrow{\mathbf{x}}+\mathrm{i} \overrightarrow{\mathbf{y}}) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{i}=\sqrt{-1} \text { and } \overrightarrow{\boldsymbol{i}} \cdot \overrightarrow{\mathbf{x}}=i \mathrm{x}_{1}+j \mathrm{x}_{2}+k \mathrm{x}_{3} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
i^{2}=j^{2}=k^{2}=i j k=-1 \tag{3}
\end{equation*}
$$

and

$$
\begin{array}{ccc}
i j=k & j k=i \quad k i=j \\
i j=-j i & j k=-k j & k i=-i k .
\end{array}
$$

Then the four dimensional position bi-quaternion is

$$
\begin{equation*}
\mathrm{X}=\mathrm{ict}+\overrightarrow{\mathbf{i}} \cdot \overrightarrow{\mathbf{x}} \tag{4}
\end{equation*}
$$

the four dimensional bi-quaternion velocity is

$$
\begin{equation*}
\mathrm{V}=\mathrm{ic}+\overrightarrow{\boldsymbol{i}} \cdot \overrightarrow{\mathbf{v}} \tag{5}
\end{equation*}
$$

the four dimensional bi-quaternion electromagnetic potential is

$$
\begin{equation*}
\mathrm{A}=\frac{\mathrm{i}}{\mathrm{C}} \Phi+\overrightarrow{\boldsymbol{i}} \cdot \overrightarrow{\mathbf{A}} \tag{6}
\end{equation*}
$$

the four dimensional bi-quaternion current density is

$$
\begin{equation*}
\mathrm{J}=\rho \mathrm{V}=\mathrm{ic} \rho+\overrightarrow{\boldsymbol{i}} \cdot \rho \overrightarrow{\mathbf{v}} \tag{7}
\end{equation*}
$$

and finally the four dimensional bi-quaternion force density is

$$
\begin{equation*}
\mathrm{F}=\frac{\mathrm{i}}{\mathrm{C}} \mathrm{P}+\overrightarrow{\boldsymbol{i}} \cdot \overrightarrow{\mathbf{F}} \tag{8}
\end{equation*}
$$

Then the bi-quaternion spatial differential operators are defined as follows:

[^0]\[

$$
\begin{array}{ll}
\text { Nabla }: \quad \nabla=\frac{\mathrm{i}}{\mathrm{c}} \frac{\partial}{\partial \mathrm{t}}+\overrightarrow{\boldsymbol{i}} \cdot \vec{\nabla} \quad \vec{\nabla}=\left(\frac{\partial}{\partial \mathrm{x}_{1}}, \frac{\partial}{\partial \mathrm{x}_{2}}, \frac{\partial}{\partial \mathrm{x}_{3}}\right) \\
\text { d'Alembert }: \quad \square=\frac{\mathrm{i}}{\mathrm{c}^{2}} \frac{\partial^{2}}{\partial \mathrm{t}^{2}}-\vec{\nabla} \cdot \vec{\nabla} \tag{10}
\end{array}
$$
\]

With this definitions the generalized Lorentz force is simply expressed as [3]:

$$
\begin{equation*}
\mathrm{F}=\mathrm{J} \nabla \mathrm{~A} \tag{11}
\end{equation*}
$$

It shall now be shown, that this force density can be derived form the total time derivative of the bi-quaternion potential also.

The total time derivative bi-quaternion operator

Lets have a bi-quaternion field $A=A(X)$ where X is in turn a function of time and space, so that $A=A\left(X\left(t, x_{1}, x_{2}, x_{3}\right)\right)$. Then the total derivative of A becomes

$$
\begin{equation*}
\mathrm{dA}=\frac{\partial \mathrm{A}(\mathrm{X})}{\partial \mathrm{X}} \mathrm{dX}=\frac{\partial \mathrm{A}}{\partial \mathrm{X}} \frac{\partial \mathrm{X}}{\partial \mathrm{t}} \mathrm{dt}+\frac{\partial \mathrm{A}}{\partial \mathrm{X}} \frac{\partial \mathrm{X}}{\partial \overrightarrow{\mathbf{x}}} \mathrm{~d} \overrightarrow{\mathbf{x}}=-\left(\frac{\partial \mathrm{X}}{\partial \mathrm{t}} \frac{\partial \mathrm{~A}}{\partial \mathrm{X}} \mathrm{dt}+\frac{\partial \mathrm{X}}{\partial \overrightarrow{\mathbf{x}}} \frac{\partial \mathrm{~A}}{\partial \mathrm{X}} \mathrm{~d} \overrightarrow{\mathbf{x}}\right) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{\partial}{\partial \mathrm{X}}=\nabla \quad \text { and } \quad \frac{\partial}{\partial \overrightarrow{\mathbf{x}}}=\vec{\nabla} \tag{13}
\end{equation*}
$$

The operator of the first term in (12) is then expanded to

$$
\begin{equation*}
\frac{\partial \mathrm{X}}{\partial \mathrm{t}} \frac{\partial}{\partial \mathrm{X}} \mathrm{dt}=\left(-\frac{\partial}{\partial \mathrm{t}}+\mathrm{ic} \overrightarrow{\mathrm{i}} \cdot \vec{\nabla}\right) \mathrm{dt} \tag{14}
\end{equation*}
$$

The operator of the second term in (12) has the following expansion:

$$
\begin{align*}
\frac{\partial \mathrm{X}}{\partial \overrightarrow{\mathbf{x}}} \frac{\partial}{\partial \mathrm{X}} \mathrm{~d} \overrightarrow{\mathbf{x}} & =\left(\frac{\partial \mathrm{X}}{\partial \mathrm{x}_{1}} \mathrm{~d} \mathrm{x}_{1}+\frac{\partial \mathrm{X}}{\partial \mathrm{x}_{2}} \mathrm{dx} \mathrm{x}_{2}+\frac{\partial \mathrm{X}}{\partial \mathrm{x}_{3}} \mathrm{dx}_{3}\right) \frac{\partial}{\partial \mathrm{X}} \\
& =\left(i \mathrm{dx}_{1}+j \mathrm{dx}_{2}+k \mathrm{dx}_{3}\right)\left(\frac{\mathrm{i}}{\mathrm{c}} \frac{\partial}{\partial \mathrm{t}}+i \frac{\partial}{\partial \mathrm{x}_{1}}+j \frac{\partial}{\partial \mathrm{x}_{2}}+k \frac{\partial}{\partial \mathrm{x}_{3}}\right) \tag{15}\\
& =\overrightarrow{\mathrm{i}} \cdot \mathrm{~d} \overrightarrow{\mathbf{x}} \frac{\mathrm{i}}{\mathrm{c}} \frac{\partial}{\partial \mathrm{t}}+\left(\begin{array}{l}
i \mathrm{dx}_{1} \\
j \mathrm{dx}_{2} \\
k \mathrm{dx}_{3}
\end{array}\right)\left(i \frac{\partial}{\partial \mathrm{x}_{1}}+j \frac{\partial}{\partial \mathrm{x}_{2}}+k \frac{\partial}{\partial \mathrm{x}_{3}}\right) \\
& =\overrightarrow{\mathrm{i}} \cdot\left(\frac{\mathrm{i}}{\mathrm{c}} \mathrm{~d} \overrightarrow{\mathbf{x}} \frac{\partial}{\partial \mathrm{t}}+\mathrm{d} \overrightarrow{\mathbf{x}} \times \vec{\nabla}\right)-\mathrm{d} \overrightarrow{\mathbf{x}} \cdot \vec{\nabla}
\end{align*}
$$

Adding (14) and (15) together and divide by dt results in the bi-quaternion total time derivative:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}}=\left(\frac{\partial}{\partial \mathrm{t}}+\overrightarrow{\mathbf{v}} \cdot \vec{\nabla}\right)-\overrightarrow{\mathrm{i}} \cdot\left[(\overrightarrow{\mathbf{v}} \times \vec{\nabla})+\mathrm{i}\left(\mathrm{c} \vec{\nabla}+\frac{\overrightarrow{\mathbf{v}}}{\mathrm{c}} \frac{\partial}{\partial \mathrm{t}}\right)\right] \tag{16}
\end{equation*}
$$

Surprisingly the multiplication of bi-quaternion velocity with the Nabla operator yields the same result, but with negative sign:

$$
\begin{equation*}
\mathrm{V} \nabla=-\left(\frac{\partial}{\partial \mathrm{t}}+\overrightarrow{\mathbf{v}} \cdot \vec{\nabla}\right)+\overrightarrow{\boldsymbol{i}} \cdot\left[(\overrightarrow{\mathbf{v}} \times \vec{\nabla})+\mathrm{i}\left(\mathrm{c} \vec{\nabla}+\frac{\overrightarrow{\mathbf{v}}}{\mathrm{c}} \frac{\partial}{\partial \mathrm{t}}\right)\right] \tag{17}
\end{equation*}
$$

As the result, the bi-quaternion total time derivative can be written very compact as

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{dt}}=-\mathrm{V} \nabla \tag{18}
\end{equation*}
$$

It is now easy to proof that the bi-quaternion force density can also be obtained by using the total time derivative:

$$
\begin{equation*}
F=J \nabla A=\rho V \nabla A=-\rho \frac{d A}{d t} \tag{19}
\end{equation*}
$$

Expanding equation (19) gives four equations:

$$
\begin{align*}
\rho \overrightarrow{\mathbf{v}} \cdot(\vec{\nabla} \times \overrightarrow{\mathbf{A}}) & =0 \\
-\rho\left[\overrightarrow{\mathbf{v}} \cdot\left(\frac{\partial \overrightarrow{\mathbf{A}}}{\partial \mathrm{t}}+\vec{\nabla} \Phi\right)+\mathrm{c}^{2}\left(\frac{1}{\mathrm{c}^{2}} \frac{\partial \Phi}{\partial \mathrm{t}}+\vec{\nabla} \cdot \overrightarrow{\mathbf{A}}\right)\right] & =\mathrm{P} \\
-\rho\left[\left(\frac{\partial \overrightarrow{\mathbf{A}}}{\partial \mathrm{t}}+\vec{\nabla} \Phi\right)-\overrightarrow{\mathbf{v}} \times(\vec{\nabla} \times \overrightarrow{\mathbf{A}})+\overrightarrow{\mathbf{v}}\left(\frac{1}{\mathrm{c}^{2}} \frac{\partial \Phi}{\partial \mathrm{t}}+\vec{\nabla} \cdot \overrightarrow{\mathbf{A}}\right)\right] & =\overrightarrow{\mathbf{F}} \tag{20}\\
\rho\left[(\vec{\nabla} \times \overrightarrow{\mathbf{A}})+\frac{\overrightarrow{\mathbf{v}}}{\mathrm{c}^{2}} \times\left(\frac{\partial \overrightarrow{\mathbf{A}}}{\partial \mathrm{t}}+\vec{\nabla} \Phi\right)\right] & =0
\end{align*}
$$

A closer look to the new proposed total time derivative (16) shows some familiar terms, as for example the well known scalar total time derivative operator. Recently some proposals for a total time derivative of the vector potential \mathbf{A} has been published by Wesley [4] and Phipps [2] and also ten years before by Mocanu [1]. All this different but similar total time derivatives are based on a separation of spatial and temporal dimensions, i.e. they are not derived consequently from a four dimensional topology. From equation (20) we can extract two equations for the total time derivative of the vector potential:

$$
\begin{equation*}
\frac{\mathrm{d} \overrightarrow{\mathbf{A}}}{\mathrm{dt}}=\frac{\partial \overrightarrow{\mathbf{A}}}{\partial \mathrm{t}}-\overrightarrow{\mathbf{v}} \times(\vec{\nabla} \times \overrightarrow{\mathbf{A}})+\overrightarrow{\mathbf{v}}(\vec{\nabla} \cdot \overrightarrow{\mathbf{A}}) \tag{21}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\mathrm{d} \overrightarrow{\mathbf{A}}}{\mathrm{dt}}=\frac{\partial \overrightarrow{\mathbf{A}}}{\partial \mathrm{t}}+\overrightarrow{\mathbf{v}} \cdot \vec{\nabla} \overrightarrow{\mathbf{A}}-(\overrightarrow{\mathbf{v}} \times \vec{\nabla}) \times \overrightarrow{\mathbf{A}} . \tag{22}
\end{equation*}
$$

References

[1] Mocanu C.I., "Hertzian Relativistic Electrodynamics and its Associated Mechanics", Hadronic Press, Palm Harbor, FL, 1 (1991) 34-38
[2] PhiPPs Thomas E, "Generalized Total Time Derivatives", Apeiron 7 Nr.1-2 (January-April 2000) 107110
[3] VAN VLAENDEREN Koen and André WASER, "Generalization of Classical Electrodynamics to Admit a Scalar Field and Longitudinal Waves", Hadronic Journal 24 (2001) 609-628
[4] WesLey Jean Paul, " A theorem and proof for the total time derivative of a vector field as seen by a moving point", Apeiron 6 Nr. 3-4 (July-October 1999) 237-238

[^0]: * André Waser, Birchli 35, CH-8840 Einsiedeln

