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In a recent paper [3] we have shown that the basic equations of electrody-
namics can be cast into a bi-quaternion form. In this paper I present an 
other general way how the set of four equations of the generalised Lorentz 
force can be derived by introducing a new operator: The bi-quaternion total 
time derivative operator.   

Introduction 
Bi-quaternions are very useful for a compact description of electrodynamics. A bi-
quarternion is defined as 
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and 
 i2 = j2 = k2 = ijk = −1 (3) 
and 
 ij = k      jk = i      ki = j 
      ij = − ji      jk = − kj      ki = − ik . 
Then the four dimensional position bi-quaternion is 

 xr
r
⋅+= iictX   (4) 

the four dimensional bi-quaternion velocity is 

 vr
r
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the four dimensional bi-quaternion electromagnetic potential is 
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rr
⋅+Φ= i

c
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the four dimensional bi-quaternion current density is 

 vr
r
ρ⋅+ρ=ρ= iicVJ   (7) 

and finally the four dimensional bi-quaternion force density is 

 F
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⋅+= iP

c
iF   (8) 

Then the bi-quaternion spatial differential operators are defined as follows: 
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With this definitions the generalized Lorentz force is simply expressed as [3]: 

 AJF ∇=   (11) 

It shall now be shown, that this force density can be derived form the total time deriva-
tive of the bi-quaternion potential also. 

The total time derivative bi-quaternion operator 
Lets have a bi-quaternion field A = A(X) where X is in turn a function of time and space, 
so that A = A(X(t, x1, x2, x3)). Then the total derivative of A becomes 
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where 
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The operator of the first term in (12) is then expanded to 
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The operator of the second term in (12) has the following expansion: 
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Adding (14) and (15) together and divide by dt results in the bi-quaternion total time 
derivative: 
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Surprisingly the multiplication of bi-quaternion velocity with the Nabla operator yields 
the same result, but with negative sign: 
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As the result, the bi-quaternion total time derivative can be written very compact as 

 ∇−= V
dt
d

  (18) 

It is now easy to proof that the bi-quaternion force density can also be obtained by using 
the total time derivative: 
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dAAVAJF ρ−=∇ρ=∇=   (19) 

Expanding equation (19) gives four equations: 
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A closer look to the new proposed total time derivative (16) shows some familiar terms, 
as for example the well known scalar total time derivative operator. Recently some 
proposals for a total time derivative of the vector potential A has been published by 
Wesley [4] and Phipps [2] and also ten years before by Mocanu [1]. All this different but 
similar total time derivatives are based on a separation of spatial and temporal dimen-
sions, i.e. they are not derived consequently from a four dimensional topology. From 
equation (20) we can extract two equations for the total time derivative of the vector 
potential: 
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