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1. Introduction 
 
The electrical equivalent circuit for a transformer has served electrical engineers well for over 
a century, but it has some disadvantages.  Essentially it models the transformer action by 
presuming a “perfect transformer” which has no losses and obeys certain rules i.e. (a) the AC 
voltages between coils are in the ratio of their turns-ratio with zero phase shift, (b) the AC 
current between coils are in the inverse ration of the turns ratio, again with zero phase shift 
which lead to (c) the load resistance reflected from secondary coil to primary coil is in the 
inverse ratio of the square of the turns ratio.  Around this perfect device are placed electrical 
components which represent the imperfections of a real device.  Often the magnitudes of 
some of these imperfections are found empirically.  Whilst this method is satisfactory for 
most transformer applications, it does not deal with transformers which have unusual features 
which affect their magnetic characteristics.  For instance the presence of a permanent magnet 
as part of the magnetic circuit, and its effect on the electrical characteristics, cannot be 
determined.  Also complex arrangements where multiple magnetic paths and coils are 
involved require special attention which involves some magnetic domain solutions in order to 
determine the parameters of the equivalent electrical circuit, but these magnetic domain 
analyses go no further than constructing a network of reluctances.  Time delays or phase shifts 
which result from magnetic parameters are another complication which require further ad-hoc 
add-ons to the equivalent circuit.  Reactive loads are another situation which is not readily 
addressed, and while the equivalent circuit attempts to model the electrical effects by 
reflecting the load reactance through the “perfect” transformer, it does not account for the 
changed magnetic flux and its interaction with the core material or other magnetic 
components. 
 
Of particular note is the fact that the primary and secondary load currents may be several 
orders of magnitude larger than the magnetizing current, so each by itself has the capability of 
creating magnetic flux of great magnitude far in excess of that which the core material can 
accommodate.  That they do not generally do so is because they oppose each other with 
respect to flux generation, that opposition and perfect flux cancellation being a hidden 
assumption implicit in the equivalent circuit.  In practice such flux cancellation can only be 
considered near perfect if primary and secondary are bifilar wound, which is not generally the 
case.  If primary and secondary coils are wound on different parts of the magnetic circuit, the 
load currents do create non-circulatory flux which is driven outside the core, that flux being 
either ignored or accounted for only in an ad-hoc manner. (The series inductance which is 
intended to account for leakage magnetization flux, i.e. the portion of quadrature flux created 
at the primary coil which does not reach the secondary, is normally determined by a 
measurement of primary inductance with the secondary short circuited.  That determination 
takes no account of the imperfection at the secondary where its coil resistance prevents it from 
being an absolute short circuit.)  
 
This report describes a method for the dynamic analysis of transformers in the magnetic 
domain.  In a manner it is the inside-out-version of the electrical equivalent circuit.  The 
magnetic “circuit” is modelled along well known lines where magnetic flux is treated like 
current and magnetic reluctance like resistance.  However it goes beyond the simple 
“magnetic Ohm’s Law” by introducing other magnetically reactive components which 
represent the outside electrical world.  This allows a time or frequency domain analysis to be 



carried out on the magnetic flux, from which the transformer electrical characteristics 
automatically follow.  Such a procedure gives a deeper insight into the magnetic behaviour, 
and enables more accurate modelling of unusual systems or those working outside their 
normal envelope. 
 
2. Magnetic Ohm’s Law 
 
This feature will be found in any good treatise on magnetism, and is repeated here for 
completeness and as a starting point.  Magnetic reluctance � is treated like electrical 
resistance R, magnetic flux Φ like current I and mmf U like voltage V.  Hence the mmf drop 
across a length of core material of reluctance � is given by U=Φ�, which is the magnetic 
Ohm’s Law equivalent of V=IR.  And just as the resistance of a rod of resistive material is 

given by A
lR σ=  where l is the length, A the cross sectional area and σ the conductance, so 

the reluctance of a rod of ferromagnetic material is A
l
µ=�  where µ is the absolute 

permeability.  Treating sections of the magnetic circuit in this way enables the reluctance of a 
core made up of different cross sections to be determined.  Also the distribution of flux 
among different branches of a complex core arrangement can be determined by solving as a 
network of reluctances. 
 
For a core with a single coil the reluctance plays it part in the inductance as L=N2/� where N 
is the number of turns.  When the coil carries a current I its mmf is U=NI ampere turns, hence 
“Ohm’s Law” gives the flux as Φ=NI/�.  Thus flux Φ=LI/N (not to be confused with flux 
linkage which is often loosely called flux and given as Φ=LI).  Figure 1 shows a simple 
inductor and its “Ohms Law” equivalent circuit. 

 
Figure 1.  A simple Inductor and its Equivalent Circuit 

 
Often a transformer will have an air gap so as to prevent the core material from going into 
saturation.  This is easily accounted for by having two reluctances in series, Figure 2. 

 
Figure 2.  Core with Air Gap 
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An inductor which doesn’t have a closed core magnetic path is a common component.  For a 
solenoidal coil with no core there are standard formulae for calculating inductance, but 
difficulty occurs when the solenoid has a permeable core.  This is usually dealt with by 
introducing the demagnetizing factor, which is dependent on the core geometry.  Why there 
should be such a demagnetization can be easily seen by considering the air gap in Figure 2 
made larger and larger until only a small portion of the core remains inside the coil. 
 

 
Figure 3.  Solenoid 

 
All of the flux now flows through the air forming the B field around the solenoid.  This 
distribution of flux can still be represented by an air reluctance, and the demagnetizing factor 
is then seen simply as a means for calculating how the input mmf is distributed across the two 
reluctances.  The mmf drop across the air reluctance reduces the mmf across the core 
(between the core faces) which appears as a reduced H value within the core, hence the term 
demagnetization.  It will be seen later that representing flux lines through air by a reluctance 
�air is also a feature of transformers. 
 
3.  Transformers 
 
If we now turn to transformers with AC input, in addition to the primary coil of Np turns the 
core has a secondary winding of Ns turns.  The output voltage is NsdΦ/dt which drives a 
current Is through a load resistor Rload given by Is=(Ns/Rload)dΦ/dt.  The back mmf induced 
into the magnetic circuit is thus U=-NsIs=-(Ns

2/Rload)dΦ/dt.  We can view the term in 
parentheses as a “magnetic inductance” ���of value Ns

2/Rload, since U=-��dΦ/dt has exactly 
the same form as V=-LdI/dt.  The transformer is shown in Figure 4 with an input from a (high 
impedance) current source. 

 
Figure 4.  Current Driven Transformer 

 
Most transformers are driven from low impedance voltage sources, and we wish to determine 
the transformer characteristics for that combination.  To do this we have to take account of the 
effective source impedance which is generally the DC resistance of the primary coil, Rp.  The 
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back emf generated across the primary coil is Vb=-NpdΦ/dt so, with an input voltage of Vin 
the voltage across Rp becomes Vin-Vb yielding an input current of (Vin-Vb)/Rp.  The mmf 
applied to the core is thus Np(Vin-Vb)/Rp which, with substitution for Vb, becomes U= Np(Vin-
NpdΦ/dt)/Rp.  This can be split into two mmf’s, U=NpVin/Rp and U1=-(Np

2/Rp)dΦ/dt, the latter 
being of the same form as V=-LdI/dt.  The primary mmf can therefore be modelled as an 
input U in series with a magnetic inductor ��=Np

2/Rp. 

 
Figure 5.  Voltage Driven Transformer 

 
Figure 5 shows the voltage driven transformer with its equivalent circuit.  Analysing the 
magnetic domain circuit is a trivial task since it is equivalent to only two inductors and a 
resistor in series.  It correctly relates the phase and amplitude of the flux Φ to the input 
voltage Vin (U and Vin are in phase).  From that analysis the electrical performance naturally 
arises as follows. 
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Real and imaginary components of Φ are 
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Imaginary and real components of dΦ/dt are 
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The secondary voltage Vs is then 
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The imaginary term shows that there is a phase shift between input voltage and the secondary 
voltage.  This phase shift is negligible under normal operating conditions where 

coresp ��� >>+ )(ω  whence the first term becomes negligible and (5) simplifies to 
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which with appropriate substitution for the magnetic terms becomes 
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Since normally the load resistor Rload is much greater than the primary coil resistance Rp the 

second term in the denominator can be ignored so that 
p

sin
s N

NV
V

−
=  which is the normal 

turns ratio formula with no phase shift.  Similarly the primary coil back emf Vb, then the input 
current, can be determined using the same simplifications, the point here being that, when the 
transformer is operated outside its design regime those simplifications no longer apply.  
Surprisingly the trivial magnetic circuit in Figure 5 provides all the details necessary for the 
full analysis. 
 
4.  Flux outside the Core. 
 
The above analysis takes no account of flux which escapes from the core.  The following flux 
plots show the situation in normal transformers at the point where the magnetizing flux is 
passing through zero (dΦ/dt=0) where the output and input voltages and load currents are at 
their peak values.  These primary and secondary currents do not drive flux around the core, 
their ampere-turn mmf’s being equal but in opposition, but it is clear that they do create flux 
within parts of the core.  

 
Figure 6.  Flux Patterns from Primary and Secondary Load Currents 
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When it is considered that load currents are several orders of magnitude larger than the 
magnetizing current, the flux lines in Figure 6 are not trivial.  To take account of these the 
magnetic domain circuit must contain reluctance values representing the flux paths through 
the air.  Figure 7 shows the addition of an air-reluctance, 7(a) corresponding with the 
transformer shown in 6(a) while 7(b) represents the transformers in 6(b) and 6(c).  
 

 
Figure 7.  Showing the inclusion of Air Reluctance 

 
It will be appreciated that the branch �air now creates a T or π network giving the magnetic 
circuit a transfer impedance (under normal operating conditions this impedance is not 
noticed).  Modelling in the magnetic domain allows this line-impedance to be seen for what it 
really is and how it may be affected by the incorporation of other magnetic components such 
as a permanent magnet or a variable reluctance. 
 
5. Hysteresis Loss or Gain 
 
It has been shown that a load taking power from the circuit, in this case a load resistor 
connected to the secondary coil, is modelled as a magnetic inductor �S.  Hysteresis loss can 
similarly be modelled this way by the inclusion of an additional inductor �H.   Its value may 
be determined by an actual loss measurement in the usual way, or by use of published figures 
for the imaginary component of core-material relative-permeability µ��.  Representing 
permeability µ as a tensor µ=µ� +jµ�� leads to the B v. H relationship (when driven 
sinusoidally) being an ellipse whose area represents energy density.  The tensor µ is then a 
mathematical way of representing the classical BH loop which is traversed CCW and gives 
energy loss per cycle.  This method can also include eddy current loss within that loop. 
 
As an aside it may be noted that instability in magnetic materials found at microwave 
frequencies can be attributed to a negative value of µ��.  The B v. H relationship is again an 
ellipse which is now traversed CW and represents energy gain per cycle.  Should such a gain 
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ever be manifest at the lower frequencies considered here it would be modelled as a negative 
value of �.  Recent researches into electron gases and semiconductors subjected to both a 
magnetic field and microwave radiation have exhibited similar instability described as 
absolute negative resistance.  This negative resistance is at DC, so it obviously also applies to 
LF!  It is possible that conduction electrons within magnetized ferromagnetic conductors 
could also exhibit instability gaining their energy, not from external microwave radiation but 
from internal radiation from individual electron Larmor precessions. 
 
6.  Reactive Loads. 
 
The procedure used for reflecting an electrical load resistor R into the magnetic circuit to 
become a magnetic inductor � can similarly be used for reactive loads.  This leads to an 
inductive load L becoming a magnetic reluctance given by �=N2/L.   
 
A capacitive load is more difficult since it appears as an impedance unlike any observed in the 
electrical world.  This new impedance acts somewhat like inductance, but whereas the back 
emf from an inductor is proportional to the first time-differential of the current, here the back 
emf is proportional to the second differential.  The symbol D has been given to this 
impedance which obeys V=-Dd2I/dt2.   In the electrical world such an impedance could be 
artificially created using an active circuit with appropriate feedback.  In the magnetic world 
the presence of a load capacitance C on a coil introduces the magnetic impedance �=N2C 
obeying U=- �d2I/dt2.  In the electrical world the presence of the capacitor creates a resonant 

circuit of frequency 
LC2

1

π
=f .  In the magnetic world the resonant frequency is 

�

�π2

1=f   

 
7. Series/Parallel Combinations 
 
Load impedances in parallel reflect into the magnetic domain as magnetic impedances in 
series, and vice versa. 
 
8. Modelling Permanent Magnets 
 
Permanent magnets can be modelled from their Amperian Surface Current equivalent which 
then appears as a mmf generator whose value is given by Um=Breml/µ0. where l is the length of 
the magnet.  This must be put in series with a reluctance �m which is the reluctance of the air 
space occupied by the magnet.  See Annex A which gives a selection of magnetic components 
with their electrical equivalents. 
 
9. A Shorted Coil. 
 
A perfectly shorted coil introduces an infinite magnetic inductance �.  In practice the coil 
resistance limits the inductance to a high value, but for small time spans the effect is the same, 
the coil acts as a flux clamp holding the flux at its value at the time the coil is shorted (that 
value could be zero).  As such it is an effective magnetic switching component since if the 
applied flux is rising it must then divert along another path, even if that path is an external air 
one.  Thus an actively switched short synchronized with alternating flux can be used to 



manipulate flux along different branches of a magnetic circuit.  This type of magnetic logic 
has not to the Author’s knowledge been used before.  Only recently has it been used by an 
MPI researcher as a flux pump to obtain a rising staircase flux waveform where each 
increment comes from a low flux source (this is similar to the well known voltage multiplier 
in the electrical world). 
 
It might be noted that when a transformer is square-wave “driven” by transistor switches 
which connect a primary coil to a DC buss, that also acts like a shorted coil in that the DC 
source resistance is near zero.  The flux through that coil is limited to obeying dΦ/dt=VDC/N 
so, if there are other mmf sources trying to drive a greater flux change (such as the circulating 
current in a resonant tank circuit), then flux must be driven outside the core.  The so called 
MEG is an example, and it might be noted that in the MEG the primary coils are alongside the 
magnet so that external flux is forced (by the resonant secondary circuits) to flow through part 
of that magnet. 
 
10. Non-Linear Magnetic Materials. 
 
All magnetic materials are non linear in particular as they go into saturation.  Modelling this 
effect in transformers is normally avoided, at best the shunt inductor used in the electrical 
model to represent the primary inductance can be given some non-linearity but this doesn’t 
tell the full story.  As we have seen the load currents do create flux in different parts of the 
core, and that isn’t even considered in that model.  However by using the magnetic domain 
circuits of Figures 5 or 6 the core reluctances can be made non-linear, and the circuits then 
analysed using SPICE like simulations.   
 
 



Annex A.  List of Magnetic Components and their Electrical Equivalents 
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