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Operations on Images Using Quad Trees

GREGORY M. HUNTER, MEMBER, IEEE, AND KENNETH STEIGLITZ, MEMBER, IEEE

Abstract—A quad tree for representing a picture is a tree in which
successively deeper levels represent successively finer subdivisions of
picture area. An algorithm is given for superposing N quad trees in time
proportional to the total number of nodes in the trees. Wamnock-type
algorithms are then presented for building the quad tree for the picture
of the boundary of & polygon, and for coloring the interior of such a
polygon. These algorithms take O(U+p +q) time, where U is the
number of polygon vertices, p is the polygon perimeter, and qisa
resolution parameter. When the resolution q is fixed, these algorithms
are asymptotically optimal.

Index Terms—Cartography, computer-aided design, encoded raster
graphics, layout, pattern recognition, picture’ compaction, picture
processing, pyramid, quad tree, Q-tree, rope, scandine encoding, space
planning. -

I. INTRODUCTION

HIS paper is concerned with the efficient construction

and use of quad trees for pictures. We begin by giving
rough characterizations of these objects to prepare for some
discussion which may show why the subject is of interest.

Pictures: A picture is a square array of colored points.
Although we use the word “picture,” we mean any two-
dimensional array of information: a map, a floor plan, the
relationship of machine parts in a plane, etc. Likewise, the
color of a point may in fact be any information to be associated
with a point in a two-dimensional grid.

Quad Trees: A quad tree is a tree whose nodes are either
leaves or have four children. The children are ordered: 1,2,
3,and 4.

Quad Trees for Pictures: A quad tree for, or representing, a
picture is a quad tree whose leaves represent areas of the pic-
ture. Each leaf is labeled with the color of the area of the pic-
ture which it represents. Each node is associated with a square
region of the picture. The root is associated with the entire
picture. Besides the root, each other node is associated with
one of the four quadrants of its parent’s square. The ith
child is associated with the ith quadrant of its parent’s square.
No parent node may have all its descendant leaves the same
color. Since a parent and its descendants represent the same
region of the picture, if all the descendants have the same
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Fig. 1. A picture and its quad tree.

color, the picture can be more compactly represented by
coloring the parent, and removing all the children (see Fig. 1).

The square associated with a node may be called the square
for that node, or the quadrant for that node. When speaking
loosely, we may refer to a node, meaning its quadrant. More
generally, we may refer to items in the quad tree and mean
their counterparts in the picture, or vice versa.

Klinger and Dyer [1] provide a good bibliography of the
history of quad trees. Their paper reports experiments on the
degree of compaction of picture representation which may be
achieved with tree encoding. Their experimental pictures
include block letters and photographs. Their experiments
show that tree encoding can produce memory savings. Pavlidis
[2] reports on the approximation of pictures by quad trees.
Horowitz and Pavlidis [3] show how to segment a picture
using traversal of a quad tree. They segment the picture by

0162-8828/79/0400-0145800.75 © 1979 IEEE




146

polygonal boundaries. Tanimoto [4] discusses distortions
which may occur in quad trees for pictures. Tanimoto [5,
p- 27] observes that quad tree representation is particularly
convenient for scaling a picture by powers of two. Quad
trees are also useful in graphics and animation applications
(6], [7], which are oriented toward construction of images
from polygons and superposition of images. Encoded pictures
are useful for display [8], especially if the encoding lends
itself to processing.

The model of computation which we use in the analysis of
the time and space requirements of our algorithms involves

a RAM, or random access machine, for which storage or

retrieval of data from memory requires constant time. Coor-
dinate words may be considered to be real numbers or a fixed
number of bits, depending upon the analysis. Time is measured
in steps, or operations upon pairs of words, such as comparison
and multiplication, requiring constant time. If an algorithm
requires f(x,, x5, X3, ", X,) time or space, it is defined to
be O(glxy,x2,x3, ", x,)) if and only if f(x,,x,5,%x3,"
Xp) <kg(xy,x3,%3, -, x,) for some constant k and all x,,
X2,X3, ", and x, greater than some fixed integer. An algo-
rithm is asymptotically optimal when its requirements are, in
the limit for large input parameters x,, x,,x3, -, and Xp,
proportional to those of the best algorithm performing the
same function. Aho et al. [9] provide a good explanation of
this kind of analysis.

II. A SUPERPOSITION ALGORITHM

We now have enough rough definitions to present an algo-
rithm which indicates the usefulness of quad tree encoded
pictures. The next section contains more precise definitions.
We begin with a preliminary algorithm to clean up a quad tree
which has four siblings colored the same.

The Condensation Algorithm: Given a tree satisfying the
requirements of a quad tree for a picture, except that there
may be cases of four identically colored sibling leaves, a quad
tree for a picture may be formed by recursively removing these
siblings and giving their color to their parent. Time linear in
the number of input nodes is required. The method is to use a
postorder traversal [10].

Starting at the root, traverse the given tree as follows. Re-
cursively, traverse the subtree rooted in each child, recording
the color of the subtree, if it is only one node, at the root.
Then, visit the root. If the root is the parent of four leaves all
colored the same, color the root their color and remove them.

We next consider the important operation of superposing
one tree on another. The Superposition of an occluding picture
P1 over a background picture P2 of the same size as Pl is
defined as P1 with points colored transparent replaced by the
corresponding points of P2.

Pairwise Superposition Algorithm: This algorithm has, as
input, the tree encodings of two pictures of the same size. The
output is the tree for the picture which is the superposition
of one picture over the other. Input specifies which tree rep-
resents the occluding picture. Input also designates a color to
be considered transparent.
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The general idea of the algorithm is that we can traverse both
trees in parallel, modifying the bottom tree when necessary.
The algorithm proceeds as follows. Traverse the two trees in
parallel. When a leaf is visited in either tree, there are three
alternatives:

Case 1: The traversal is visiting leaves in both trees. If the
leaf in the upper tree is transparent, do nothing to the lower
tree. If the leaf in the upper tree is opaque, replace the leaf
in the bottom tree with the leaf in the upper tree. Continue
the traversal.

Case 2: The traversal is visiting a leaf in the upper tree and
a parent in the lower tree. If the upper tree leaf is transparent,
do nothing. If the leaf in the upper tree is opaque, replace the
lower tree parent and its descendants (without traversing them
by changing pointers) with the upper tree leaf. Continue the
traversal as if the descendants in the lower tree already had
been visited.

Case 3: The traversal is visiting a parent 4 in the upper tree
and a leaf B in the lower tree. Replace B with 4 and its sub-
tree with all transparent leaves given the color of B. After
traversing the subtree, continue the parallel traversal.

Definition: Super (x, y) is the pairwise superposition algo-
rithm applied to upper tree x and lower tree y.

Lemma: If y is already in memory to start, and the output
need not be read out of memory but may be formed there
and left there, Super (x, y) is O(number of nodes in x). If
input and output must be read in and out, respectively,
Super(x, y) is O (number of nodes in x and y).

Proof: Observe that in each case of traversal interruption,
work is proportional to a portion of the upper tree unique to
that interruption. Q.ED.

We now consider the superposition of n pictures of the same
size and given in an order 1,2, 3,--- , n, each picture except
number one having associated with it a color considered
transparent for that picture, where lower numbered pictures
are considered Jower, and higher numbered pictures are con-
sidered to be higher. This is defined as the picture which
at each point is colored the same as the corresponding point of
the highest picture not transparent at that point. All colors
not transparent in a tree are defined to be opaque in the tree.

The N-Tree Superposition Algorithm: Start with the bottom
tree. Using the pairwise superposition algorithm, superpose
the next highest tree. Over the resulting tree, superpose the
next highest tree. Repeat until the highest tree has been
superposed on the superposition of all the lower trees. After
all the pairwise superpositions have been completed, apply the
condensation algorithm, and the n-tree superposition algorithm
terminates.

Theorem: The N-tree superposition algorithm may be per-
formed in time and space linear in the number of nodes in all
the trees.

Proof: After tree 1 has been constructed from the input,
Super (n, Super (n- 1, Super (n -2, - Super (3, Super (2,
1)) - - - ) yields the superposition of the n-trees. It is clear that
each Super operation can be accomplished in time and space
linear in the size of the upper tree. Summing the sizes of each
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upper tree in each such operation and the size of tree 1 gives
the sum of the sizes of all the trees. Q.E.D.
We note that similar techniques can be used to find the
union, intersection, and other operations on pictures. The
reader is referred to [11] for details. Next, we consider the
complexity of quad tree representations of polygons.

III. MORE DEFINITIONS

We begin with more precise definitions of previous terms,
then add some new terms.

- Pictures: A picture is an ordered pair P = (C, A), where Cis
a finite set of colors, and A is a square array of pixels (picture
elements, points of the picture), each an element of C.

Trees for Pictures: A tree T is a tree for the picture P =
(C, A), if there is a mapping M from the leaves of T into
disjoint subsets of A whose union is A. Each leaf is labeled
with a color shared by all pixels in the subset of 4, which is
the image of the leaf under the mapping M. No parent node
has all descendant leaves colored identically.

“**” Denotes exponentiation.

Quad Trees for Pictures: T is a (depth-q) quad tree for a
picture P=(C, A), if T is a tree for P under mapping M, T is
a quad tree, 4 is a 2**q X 2**q array, and q is a positive
integer. Let K be a mapping from nodes of T to square
portions of A4, and let X map the root of T to A. Let K map
the ith child of a node to the ith quadrant of the K-image of
the parent. A quadrant includes the points on its boundary.
M is the restriction of K to leaves of T. Note that T has at

most g + 1 levels (see Fig. 2).
~ Polygons: A polygon is a list of coplanar points, called its
vertices, listed as pairs of coordinates. The edges of a polygon
are line segments between consecutive vertices and between
the first and the last vertices. Polygons are simple; that is,
their edges do not intersect. Each edge intersects only two
vertices: its endpoints. The vertices of polygons have non-
negative coordinates.

Pictures of Polygons: A picture P=(C, A) is a picture of
polygon G if the following conditions hold. Coordinates of
G are between O and 2**q, inclusive. Array 4 is 2%*q X 2*%4.
Pixels are square. A(1, 1) represents a pixel with corners
(0, 0),(0,1),(1,0),and (1, 1). A (2**q,2**q)is a pixel with
corners (2*%q, 2*%q), (2**q - 1,2%*q - 1),(2**q - 1,2*%g),
and (2**q, 2**q - 1). Other pixels in 4 are mapped into the
coordinate system in the natural way. All pixels inside the
polygon have one color, “interior.” Pixels outside the poly-
gon are colored “exterior.”” Pixels intersecting the polygon
are colored interior.

Quad Trees for Polygons: T is a quad tree for polygon G if
t is a quad tree for picture P and P is a picture of polygon G.

In a quad tree for a polygon, nodes are divided into three
exclusive classes: interior, exterior, and boundary nodes
(see Fig. 3). . .

Boundary nodes are those intersecting the boundary of the
polygon. It may be that only the boundary of the node inter-
sects the polygon. That is, the polygon may touch the node
only on the edges of its square.
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Fig. 2. A quad tree for a picture, and examples of mapping XK.

X

2

Fig. 3. A polygon and the leaves of its picture. The boundary leaves
are shaded.

Interior nodes are those containing only points interior to
the polygon.

Exterior nodes are nodes wholly outside the polygon.

Complexity Parameters: v is the number of vertices in a
polygon. g is the base 2 logarithm of the length of a side of a
picture. q limits the depth of the quad tree. If we assume that
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the number of bits in the coordinates of polygonal vertices is
fixed, it is not meaningful to let ¢ increase indefinitely. We
will assume that if the number of bits in polygonal coordinates
is fixed, so is picture resolution, and so is g. Our analyses will
make explicit the effect of varying q. p is the smallest integer
no less than the perimeter of a polygon. p is measured in
pixel widths, assuming there is a picture associated with the

polygon. ]
CEILING (X) is the smallest integer no less than X

IV. THE COMPLEXITY OF THE QUAD TREE
FOR A POLYGON

The Parenthood Theorem: In a quad tree for a polygon, only
boundary nodes may have children.

Proof: Assume that an interior or exterior node has children.
Interior nodes have all interior descendants; exterior, exterior
descendants.  Therefore, all descendant leaves of interior
nodes are colored interior; of exterior, colored exterior. But
no parent has all descendant leaves colored identically, and
the assumption is contradicted. Q.E.D.

Lemma: Any curve entering a square, touching each of its
four quadrants, and then exiting must be at least as long as the
side of the square.

Proof: (see Fig. 4.) Assume that the side of the square is
of length 2. Let the curve enter the square WXYZ on side
XY at point A, first intersect PR at point B, and exit WXYZ
atD. AB> 1. If B is the center point, BD > 1. Therefore, we
may assume that B is closer to R than to P, as shown, without
loss of generality. If D is on WZ, XY, or XW, then BD > 1.
Therefore, we may assume that D is on YZ. Since the curve
must touch some point C in [/ after reaching B, CD > 1.

Q.E.D.
Consider a grid of squares, each having sides of length n.
Let G be a polygon of length p lying on the grid. We will
decompose G into a sequence of curves. Chose some point
where G exits one square to enter another. Define the first
curve in G as extending from this point until four squares
have been intersected and we cross into a different, fifth,
square. At this point, begin the next curve in G, intersecting
four new squares not counting those intersected by any
previous curve and extending up to the point where G enters a
fifth square not previously intersected. G is composed of a
sequence of such curves, plus one final curve taking us back
to the point where we started. This final curve may intersect
fewer than a full complement of four previously nonintersected
squares.
Theorem: Each curve defined above, except the final curve,
must be at least 7 in length.

Proof: Call the four squares which define the curve, 4, B,
C, and D. If the curve is less than 7 in length, no two of A4,
B, C, and D canbe n or more units apart at their closest points.
Since any two squares which do not touch must be separated
by at least n at their closest points, all four squares must
touch one another. This means that the squares are arranged
into a larger 2 X 2 square of squares. According to the lemma
above, any curve entering such a larger square, touching each
of the four component squares, and exiting the larger square
must have length at least 2n. Q.ED.
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Fig. 4. Square WXYZ and its quadrants.

Corollary: Since only four new squares are added by each
curve, and each curve has length at least n, a polygon with a
perimeter no longer than p can intersect no more than 4
CEILING (p/n) squares.

We will find, for each level of the quad tree for a polygon, an
upper bound on the number of nodes at that level. Then, we
will sum the bounds for all levels to get an upper bound to the
number of nodes in the tree.

Let the root be level 1 of a quad tree for a polygon. At level
k, the grid of quadrants has side 2**q and each square has side
2**(g - k +1). Then, the last corollary implies that the polygon
may intersect no more than 4 CEILING (p/2**(q - k + 1))
quadrants at level k. Call this expression B(k).

Since only nodes intersecting the boundary may have children
(the parenthood theorem), no more than B(k) nodes at level
k have children. Since each node on level k + 1 is the child of
a node on level k, there can be no more than 4B(k) nodes on
levelk +1.

Since there are, at most, the root and four children of the
root on the first two levels and no nodes beyond level ¢ + 1,
we have in the entire tree no more nodes than

q q
5+ 4B(k)<S5+ Y 16 CEILING (p/297%*1)
k=2 k=2

q
<5+ 3 16(1+p/237k+1)

k=2
q q
<5+ (16 > 1) +8 ) pf29*k
k=2 k=2|
q-2

<5+16(g-1)+8 3 p/2!
i=0

<16g-11+8 Y p/2f
i»0

<16g-11+16p.

We have just proved the tree complexity bound theorem. There
are no more than 16 - 11 + 16p, i.e., O (p + q) nodes in the
quad tree for a polygon. The bound holds for trees which
would be quad trees except for cases of boundary nodes with
all children colored identically. This is because our analysis,
having nothing to do with color, assumed only that all parent
nodes touch the boundary. See [11] for examples which
approach this bound, and Tanimoto [5] for another complexity
measure.




150 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI-1, NO. 2, APRIL 1979

Fig. 5. The adjacency tree for leaf X is shown with hashed edges.

in the quad tree. The number of nodes in an adjacency tree is
no more than twice the number of its leaves. Therefore, the
number of nodes in adjacency trees is no more than four times
the number of leaves in the quad tree. Q.E.D.

We may wish to rope the tree as we build it. If a tree grows
by a sequence of additions of four children each to a sequence
of leaves, the following technique applies.

The Roped Quad Tree Refinement Theorem: A leaf of a
roped quad tree may be given four children and the ropes may
be updated, all in constant time.

Proof: Give X four children. Connect neighboring children
of X with (labeled) ropes. For each side of X, add or delete
ropes as follows:

Case I: X is roped on the side being considered. Leave the
rope only if it leads to a leaf; otherwise, remove it. If the
rope leads to a parent node, rope its children bordering X to
neighboring children of X.

Case 2: X has no rope on the side being considered. If X
has a neighbor on the side, it is larger than'X. Do nothing.

Q.ED.

Corollary: A tree may be roped in linear time.

The Roped Quad Tree Condensation Theorem: In a roped
quad tree, the children of any given parent with four leaf-
children may be removed and the resultant tree may be

"IN

RS SE P p  A

P 1w >, S e ol
ks 5 q
Aﬁ%ﬁ%&s ﬁ'ﬁg‘i’ b

Fig. 6. The adjacency tree for leaf X is shown with hashed edges.
Ropes are shown as dashed lines. Note that X and its leaf neighbors
on the side of the adjacency tree are connected by moves along ropes
and edges of the adjacency tree.

properly roped, all in constant time.
points to the given parent.

Proof:

Adding New Ropes: New ropes are needed when there
are new cases of equalsized neighbors, one of which is a
leaf. No old leaves receive new neighbors in this process.
The only new leaf is the ex-parent. All its neighbors of equal
size which are leaves are already connected to it by ropes. All
of its nonleaf equalsized neighbors have children which are
roped to the leaf-children to be removed. Therefore, the leaf-
children are connected to children of nodes which should be
roped to the given parent. Simply insert the new ropes.

Deleting Old Ropes: Since the only nonleaves in the new
tree were nonleaves in the old tree, none of the ropes in the
input tree need be removed except for those connected to
the children removed. Remove the children and any ropes
connected to them. QE.D.

We may wish to find neighbors more quickly than is possible
by using ropes and adjacency trees.

The Collapsing Algorithm: Given a roped quad tree, neigh-
bors will be connected to form what we will call a netted quad
tree. This will be done in time linear in the number of leaves.
Traverse the quad tree in time linear in the leaves of the quad
tree. Foreach leaf X of the quad tree having an adjacency tree,

Input to this process
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(A different perspective, is obtained by measuring p in
units of the length of the side of the picture. p shrinks by a
factor of 2**g. With these units, the number of nodes in the
quad tree for a polygon is O(p2**q). Comparatively, there
are 2**(2q) pixels in the array representing the picture as a
grid. Varying q shows how changing resolution affects the
number of nodes for a given, fixed image.)

V. A WARNOCK-TYPE ALGORITHM FOR BUILDING THE
QuaDp TREE FOR A PICTURE

A Warnock-type algorithm is one which uses successive sub-
division of the picture until each quadrant is simple, according
to some criterion. Warnock’s visible-surface algorithm is
discussed by Newman and Sproull [12, pp. 297-312].

How may we, given a polygon as a list of vertices and a de-
sired picture element size, build the quad tree for the polygon?
How much time is required? We will first give a Warnock-
type algorithm for which a quadrant is defined as simple if it
has only one color. Thus, simplicity is equivalent to non-
intersection with the polygonal boundary. _

The Tree-for-a-Polygon Algorithm: Start with the root as
the current node. Recursively create the four children of
every nonpixel node whose square intersects the polygonal
boundary. Color pixels and nonintersecting nodes to reflect
their inclusion or exclusion by the polygon.

Theorem: Time O (v(p + q)) is sufficient to build the quad
tree for a polygon. Space proportional to the input and out-
put is sufficient.

Proof: It is enough to test each of the O(p + q) nodes
against the polygon. We can test each node for intersecting
the boundary of the polygon in O (v). We can then test each
node not intersecting the boundary for inclusion in the polygon
to determine the right color in O(v). This may be done by
following the polygon around an arbitrary point in the node’s
quadrant, integrating the angles traced. The integral is nonzero
if and only if the polygon wraps around the point. QED.

The data structures introduced next will aid us in finding an
algorithm that is asymptotically faster.

V1. NEIGHBORS, ADJACENCY TREES, AND ROPES

It will be useful later to find picture information for areas
neighboring other areas.

Definitions: A pair of nodes are neighboring, or bordering, if
their quadrants do not overlap areas but intersect on an entire
side of one of them, not only on a corner. (Recall that a
quadrant includes the points on its boundary.)

Boundary nodes are those intersecting the polygon, if only
at a point. It follows that, given two boundary leaves, there
is a sequence of boundary leaves from one of the given leaves
to the other, each successor leaf being a neighbor to its pre-
decessor. It might be said that the boundary leaves are path-
wise connected.

Adjacency trees are used to provide paths from leaves to
neighboring leaves: an adjacency tree is a binary tree formed
from nodes and edges in the quad tree. For each side on
which a leaf X of a quad tree has multiple neighboring leaves,
there is an adjacency tree, with these neighbors as leaves. The
nodes of the adjacency tree are these leaves, plus those of their
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ancestors in the quad tree which are no larger than X. These
nodes and the edges between them in the quad tree form the
adjacency tree (see Fig. 5). Note that the root of an adjacency
tree for a leaf X is a neighbor of X of equal size.

A “rope” may be used to find the adjacency tree for a leaf,
as follows. A rope is an edge between neighboring nodes of
equal size, at least one of which is a leaf (see Fig. 6). Eachend
of a labeled rope is labeled with the side of the node on that
end which borders the neighbor on the other end. Throughout
this exposition, assume either that all ropes are labeled, or
that each node is labeled with the coordinates of its sides.
Thus, constant time is enough to determine the direction in
which a rope leads.

A roped quad tree is a quad tree in which all possible ropes
are present. Note that in aroped tree each leaf is roped to each
of the roots of its adjacency trees.

The Neighbor-Finding Theorem: Given a roped quad tree
and given a leaf, finding a neighboring leaf with a particular x
coordinate and sharing a given horizontal side with the given
leaf, or with a particular y coordinate and sharing a given verti-
cal side with the given leaf, can be done in time linear in the
number of levels separating the neighbors in the quad tree.
The requested side must not lie on the boundary of the picture,
and the x or y coordinate must intersect the given side. Other-
wise, the specified neighbor does not exist.

Proof: We give an algorithm.

Case 1: If there is no rope from the leaf on the desired side,
the desired neighbor must be larger. Ascend until the current
node has a rope on the desired side. This rope leads to the
desired neighbor.

Case 2: If there is a rope from the leaf on the desired side
and it leads to a leaf, this leaf is the desired neighbor.

Case 3: If there is a rope from the leaf on the desired side
and it leads to a nonleaf, descend. Consider only the descen-
dants on the desired side of their parents. Branching to a
selected child of a node selects one-half of the range of coor-
dinates of the parent. Thus, branching into the correct range
of coordinates at each step leads us closer to the.desired
neighbor. When continued descent of this sort is impossible,
we are visiting the desired neighboring leaf. Q.E.D.

As we move through the tree, if we keep track of the picture
location and size of the current node, we can compute the
quadrant for any parent, child, or neighbor node which we
visit next. This is possible because we can check to see which
child is involved in a vertical movement and which side is -
involved in following a rope. Alternatively, as we build the

. tree, we may store with each node the inequalities representing

the sides of the quadrant for the node. These inequalities
determine inclusion in the quadrant.

The Adjacency Tree Size Theorem: The total number of
nodes in all adjacency trees for a given quad tree is no more
than four times the number of leaves in the quad tree. A node
in multiple adjacency trees is counted once for each tree.

Proof: On two sides of any given quad tree leaf are siblings
or siblings’ children. Thus, a quad tree leaf can have, at most,
two larger neighbors. Therefore, a quad tree leaf can be a
leaf in only two adjacency trees. Thus, the number of leaves
in adjacency trees is no more than twice the number of leaves
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pause in the quad tree traversal while traversing each of X’s
adjacency trees, joining each of their leaves with pointers to
X. While traversing the adjacency tree for side Y of X , con-
struct a circularly linked list of two-way pointers to the
neighbors of X on side Y, in order along the side Y, counter-
clockwise about X. Put two-way pointers between this list and
side Y. Put two-way pointers between each X and each of its
sides. The result of this process is called a netted quad tree.
By the adjacency tree size theorem, the total cost of adjacency
tree traversal is linear in the leaves of the quad tree.

For a netted tree, finding some neighbor on a given side of
a given leaf requires constant time. Finding all the neighbors
on a side requires time linear in the number of neighbors.

VII. Two COMPONENT ALGORITHMS

The algorithms of this section will be used in the algorithm
of the next section.

Finding a Point Inside a Polygon: Given a polygon as a se-
quence of vertices, we will find some inside point in O (v) time.
First find any leftmost vertex A. Find B, the leftmost vertex
right of 4. A =(xa, ya), and B=(xb, yb). Letd=xa+0.5
(xb - xa). Bisect the angle at A. All points on the bisector
to the right of A are on the interior of the polygon so long as
they are to the left of any edges not touching 4. Therefore,
the intersection of the bisecting line and the line x =d is a
point inside the polygon.

Finding a Polygon’s Edges’ Insides: We will visit the edges of
a polygon in order, determining on which side of each edge is
the inside of the polygon. We require O (v) time. We use the
technique of finding a point inside a polygon to find a left-
most vertex and an associated inside point. Pick an edge having
the vertex as endpoint. Determine on which side the inside
point lies. This is the inside side of the edge. In constant
time for each succeeding edge, find its inside knowing the inside
of its predecessor. One method: bisect the angle formed by
the two edges. A point on the bisector is on the inside of one
edge if it is on the inside of the other.

VIII. THE OUTLINE ALGORITHM

The outline algorithm constructs the quad tree for a polygon,
except that each boundary pixel is represented by a leaf;
boundary leaves are one color, and interior and exterior
leaves are another color. Optionally, the output tree is roped,
and output may include a list of all boundary pixel sides
which are wholly interior to the polygon, with pointers both
ways between them and their pixels in the tree.

This algorithm is a Warnock-type algorithm in the sense that
successive subdivision of quadrants continues until each quad-
rant is either nonboundary or a pixel.

Using the techniques of the algorithms for finding points
inside polygons and the insides of edges, traverse the polygon.

Whenever we find that the polygon touches only the boundary

of a pixel, or goes through a corner, we make an arbitrarily
small perturbation in the polygon so this does not occur.
Construct the root of the quad tree. From a starting vertex,
follow the polygon until it enters, then exits, a pixel. Call
this pixel X. In the quad tree, give four children to each leaf
whose quadrant contains X, and continue to do so until X

has been added to the tree. In this and all following addition
of nodes to the quad tree, use the technique of the roped quad
tree refinement theorem to keep the tree properly roped.

Each point at which the polygon enters or exits a pixel is
on the boundary of the polygon. Therefore, following the
boundary of the pixel from such an entry or exit point takes
us immediately either inside or outside the polygon. Thus, each
entry or exit point has an inside and an outside side on the
boundary of the pixel. .

We define an entry/exit item as one entry point, the follow-
ing exit point, a pointer to the pixel in the quad tree traversed
between the entry and exit points, and a designation of the
inside and outside sides of the entry and exit points on the
boundary of the pixel. Each entry/exit item will be pointed to
by the associated pixel in the quad tree.

Point X to an entry/exit item for X. Continue to traverse
the boundary of the polygon, and for each entry and exit of
a pixel, do two things:

1) The following steps add to the tree (if not already in the
tree) Z, the pixel defined by the current entry and exit points.
Thus, in the steps following, each pixel on the boundary of
the polygon is added to the tree in the iteration of 1 which is
based on the first entry and exit of that pixel.

Y, the leaf entered at the current entry point, is a neighbor
of the last pixel exited by the polygon boundary and added to
the tree in a previous iteration of 1. Starting from this last
pixel, find its neighbor Y. If Y is a pixel, a rope leads from
this last pixel directly to Y, and finding Y requires only con-
stant time. If Y is a pixel, the remainder of 1 is omitted, since
Z =Y and thus Z already has been added to the tree. Assume
that Y is not a pixel. Find Y using an adjacency tree and a
rope. If Y is on level k, finding Y requires no more than
O(q - k) time. Since Y is not a pixel, ¥ must contain Z.
Add four children to Y. Add four children to each leaf
which is a descendant of Y and which contains Z , and continue
to do so until Z has been added to the tree. Note that children
are added only to nodes containing Z, which is entered by the
boundary. Thus, children are added to boundary nodes only.
This process of adding children requires adding O(q - k)
descendants of Y to the tree. Note further that in each intera-
tion of 1 that adds nodes to the tree, finding the next (non-
pixel) leaf entered by the polygon requires time proportional
to that required to actually add the nodes. Color leaves
created according to whether they have been intersected by
that portion of the boundary we have traversed, or not.

2) Create an entry/exit item containing the current entry
and exit points, and install a pointer from Z to the item.
Point the last entry/exit item to this new one.

When the traversal of the polygon has been completed back
to the first entry point of X, the traversal of the polygon
terminates. '

The algorithm terminates now, unless the list of inside pixel
sides is desired as an ‘output. The following generates the
optional list.

Noting that the entry/exit items form a linked list, and that
there are pointers both ways between items and their pixels,
scan the items for each pixel. This can require no more than
time proportional to the number of entry/exit points for all
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pixels O(v+p). Identify the entry or exit point closest to
each endpoint of each side of each pixel and lying on that
side. Among these particular entry or exit points are some
special points.

The special points which we will now define will make it
easy to determine whether a pixel side not intersecting the
boundary of the polygon is inside or outside the polygon.
For each endpoint of a side not intersecting the boundary of
the polygon, there is an entry or exit point which would be
encountered first, starting from the endpoint and traveling
away from the side along the boundary of the pixel. Call the
two such points for the two endpoints of such a side, the
first-points for the side (see Fig. 7).

Next, we will put into a list all the boundary pixel sides
which are wholly interior to the polygon.

A side not intersecting the boundary of the polygon is inside
the polygon if and only if it lies on the inside of each of its
first points. Recall that entry/exit items tell us the inside side
of each entry or exit point. For each pixel with an entry/
exit item, find each side not intersected by the boundary of
the polygon. Put into a list, with pointers both ways between
it and its pixel in the tree, each such side lying on the inside
of each of its first-points. The list now contains all sides
wholly within the polygon which are sides of boundary pixels.
Terminate the algorithm.

Theorem: The outline algorithm takes time and space
O(w+p+gq).

Proof: Recall that each iteration of 1 that adds nodes to
the tree takes time proportional to the number of nodes
added, so that the total time taken by these iterations of 1 is
proportional to the number of nodes in the output tree.
The other iterations of 1 and the iterations of 2 take time
proportional to the number of entry/exit items, and follow-
ing the polygonal boundary takes no more than that plus
O(v). The number of entry/exit items is O (v + p), and the
number of nodes in the output tree is O (p + q), so the whole
algorithm takes O(v+p +q) time. The space requirements
are no worse than proportional to the time requirements.

Q.ED.

The Modified Outline Algorithm Theorem: A modified out-
line algorithm can create in O (v + p + q) time the quad tree
for a polygon, except that the boundary leaves are one color,
and the other leaves are another color. Optionally, the algo-
rithm will output a roped tree, with a list of inside sides of
boundary pixels, with two-way pointers between them and
their pixels in the tree.

Proof: Let the modified algorithm consist of the outline
algorithm followed by the condensation algorithm. It is
apparent that condensation may proceed with each step
modifying, in constant time, the list of inside sides to reflect
the new tree. To output a roped tree, use the technique of the
roped quad tree condensation theorem to modify the con-
densation algorithm so that each step yields a properly roped
tree.

Since O (p + q) nodes are produced, as above, by the outline
algorithm, condensation requires no more time, and total time
is O(v +p +q), as for the outline algorithm. Q.ED.
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Fig. 7. A boundary pixel and the first-points of its hashed side.

We conclude this section with a comment on asymptotic
optimality. For pictures of polygons, it must be that p is no
more than v times 2**(q + %), or v times the length of the
diagonal of the picture. Thus, if ¢ is fixed, p is O(v) and an
O(v+p +q) algorithm is O(v). Since the time required just
to read the input is proportional to v, such an algorithm is
asymptotically optimal when the resolution g is fixed.

IX. THE COLORING ALGORITHM

The coloring algorithm takes as input a roped quad tree for
a polygon, except that the boundary and nonboundary leaves
are colored two different colors and all boundary leaves are
pixels, and a list of those sides of boundary pixels which are
wholly interior to the polygon, the sides having pointers
both ways between them and their pixels in the tree. Output
is the quad tree for the polygon. In other words, the algo-
rithm colors the interior nodes the same as the boundary
nodes.

In outline, the coloring algorithm performs the collapsing
algorithm, colors the interior leaves the same as the boundary
leaves, and performs the condensation algorithm. The output
is precisely the quad tree for the polygon.

Coloring Algorithm: Perform the collapsing algorithm to
get a netted quad tree. For a netted tree, finding some neigh-
bor on a given side of a given leaf requires constant time.

Put into a stack, with pointers back to their pixels, all the
sides of the input list. The stack now contains all sides wholly
within the polygon which are sides of boundary pixels.

For convenience, now call leaves colored with the boundary
color, colored, and those colored as the exterior, not colored.
Note that, at this point, interior leaves are not colored. We
will color them by propagating color from colored leaves to
neighboring leaves. Since there is a path to any interior leaf
from a boundary leaf, all interior leaves will be colored.

Repeat the following until the stack is empty. Look at
the side S which is on the top of the stack and the leaf P
pointed to by S. If there is an uncolored leaf N bordering
P on side S, color N. Also, push onto the stack, with pointers
to NV, all sides of N. Remove S from the stack.

When the stack is empty, perform the condensation algo-
rithm to complete the coloring algorithm.

Theorem: The coloring algorithm requires time and space,
at most, proportional to the size of its input. This is true
even if inputs are of arbitrary resolution q.
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Proof: The condensation and collapsing portions require
time and space proportional to the number of nodes in the
input tree. Pointer maintenance in the condensation phase
requires time proportional to the number of pointers.

A simple bookkeeping argument shows that the total work is
linear in the number of nodes in the input tree. Each side of
each leaf is stacked, at most, once. Divide neighbor finding
operations into two classes: those from leaves to smaller leaves,
and those to nonsmaller leaves. The operations in each class
can number no more than four times the number of leaves.

QED.

X. A LINEAR TREE-FOR-POLYGON ALGORITHM

The Outline-and-Color Algorithm: Input is a polygon.
Output is a quad tree for the polygon. The algorithm consists
of the outline algorithm followed by the coloring algorithm.

Theorem: Summing the requirements for each part reveals
that the outline-and-color algorithm requires O(v+p +q)
time and space. Recalling the argument after the modified
outline algorithm theorem, this is asymptotically optimal time,
when resolution q is fixed.
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